亚洲AV乱码一区二区三区女同,欧洲在线免费高清在线a,中文字幕丝袜四区,老少配老妇熟女中文高清

<s id="38axe"><nobr id="38axe"></nobr></s><abbr id="38axe"><u id="38axe"></u></abbr>

<sup id="38axe"></sup>
    <acronym id="38axe"></acronym>
  • <s id="38axe"><abbr id="38axe"><ins id="38axe"></ins></abbr></s>
    
    
        <s id="38axe"></s>

        2021年成人高考高起點(diǎn)數(shù)學(xué)考前復(fù)習(xí)資料12

        成人高考 責(zé)任編輯:楊銳頻 2021-09-29

        摘要:成考有三種報(bào)考層次,其中報(bào)考了高起點(diǎn)的考生,都要考《數(shù)學(xué)》科目。數(shù)學(xué)題最考驗(yàn)學(xué)生的邏輯思維能力,這就需要考生在平時多加練習(xí)。今天我們就先來看看2021年成人高考高起點(diǎn)數(shù)學(xué)考前復(fù)習(xí)資料12,希望能幫助到大家。

        2021年成人高考高起點(diǎn)數(shù)學(xué)考前復(fù)習(xí)資料12

        點(diǎn)擊查看更多>>成人高考高起點(diǎn)數(shù)學(xué)考前復(fù)習(xí)資料

        函數(shù)值域及求法

        函數(shù)的值域及其求法是近幾年高考考查的重點(diǎn)內(nèi)容之一.本節(jié)主要幫助考生靈活掌握求值域的各種方法,并會用函數(shù)的值域解決實(shí)際應(yīng)用問題.

        ●難點(diǎn)磁場

        (★★★★★)設(shè)m是實(shí)數(shù),記M={m|m>1},f(x)=log3(x2-4mx+4m2+m+ ).

        (1)證明:當(dāng)m∈M時,f(x)對所有實(shí)數(shù)都有意義;反之,若f(x)對所有實(shí)數(shù)x都有意義,則m∈M.

        (2)當(dāng)m∈M時,求函數(shù)f(x)的最小值.

        (3)求證:對每個m∈M,函數(shù)f(x)的最小值都不小于1.

        ●案例探究

        [例1]設(shè)計(jì)一幅宣傳畫,要求畫面面積為4840 cm2,畫面的寬與高的比為λ(λ<1),畫面的上、下各留8 cm的空白,左右各留5 cm空白,怎樣確定畫面的高與寬尺寸,才能使宣傳畫所用紙張面積最小?如果要求λ∈[ ],那么λ為何值時,能使宣傳畫所用紙張面積最小?

        命題意圖:本題主要考查建立函數(shù)關(guān)系式和求函數(shù)最小值問題,同時考查運(yùn)用所學(xué)知識解決實(shí)際問題的能力,屬★★★★★級題目.

        知識依托:主要依據(jù)函數(shù)概念、奇偶性和最小值等基礎(chǔ)知識.

        錯解分析:證明S(λ)在區(qū)間[ ]上的單調(diào)性容易出錯,其次不易把應(yīng)用問題轉(zhuǎn)化為函數(shù)的最值問題來解決.

        技巧與方法:本題屬于應(yīng)用問題,關(guān)鍵是建立數(shù)學(xué)模型,并把問題轉(zhuǎn)化為函數(shù)的最值問題來解決.

        解:設(shè)畫面高為x cm,寬為λx cm,則λx2=4840,設(shè)紙張面積為S cm2,則S=(x+16)(λx+10)=λx2+(16λ+10)x+160,將x= 代入上式得:S=5000+44 (8 + ),當(dāng)8 = ,即λ= <1)時S取得最小值.此時高:x= =88 cm,寬:λx= ×88=55 cm.

        如果λ∈[ ]可設(shè) ≤λ1<λ2≤ ,則由S的表達(dá)式得:

        又 ≥ ,故8- >0,

        ∴S(λ1)-S(λ2)<0,∴S(λ)在區(qū)間[ ]內(nèi)單調(diào)遞增.

        從而對于λ∈[ ],當(dāng)λ= 時,S(λ)取得最小值.

        答:畫面高為88 cm,寬為55 cm時,所用紙張面積最小.如果要求λ∈[ ],當(dāng)λ= 時,所用紙張面積最小.

        [例2]已知函數(shù)f(x)= ,x∈[1,+∞ (1)當(dāng)a= 時,求函數(shù)f(x)的最小值.

        (2)若對任意x∈[1,+∞ ,f(x)>0恒成立,試求實(shí)數(shù)a的取值范圍.

        命題意圖:本題主要考查函數(shù)的最小值以及單調(diào)性問題,著重于學(xué)生的綜合分析能力以及運(yùn)算能力,屬★★★★級題目.

        知識依托:本題主要通過求f(x)的最值問題來求a的取值范圍,體現(xiàn)了轉(zhuǎn)化的思想與分類討論的思想.

        錯解分析:考生不易考慮把求a的取值范圍的問題轉(zhuǎn)化為函數(shù)的最值問題來解決.

        技巧與方法:解法一運(yùn)用轉(zhuǎn)化思想把f(x)>0轉(zhuǎn)化為關(guān)于x的二次不等式;解法二運(yùn)用分類討論思想解得.

        (1)解:當(dāng)a= 時,f(x)=x+ +2

        ∵f(x)在區(qū)間[1,+∞ 上為增函數(shù),

        ∴f(x)在區(qū)間[1,+∞ 上的最小值為f(1)= .

        (2)解法一:在區(qū)間[1,+∞ 上,f(x)= >0恒成立 x2+2x+a>0恒成立.

        設(shè)y=x2+2x+a,x∈[1,+∞ ∵y=x2+2x+a=(x+1)2+a-1遞增,

        ∴當(dāng)x=1時,ymin=3+a,當(dāng)且僅當(dāng)ymin=3+a>0時,函數(shù)f(x)>0恒成立,故a>-3.

        解法二:f(x)=x+ +2,x∈[1,+∞ 當(dāng)a≥0時,函數(shù)f(x)的值恒為正;

        當(dāng)a<0時,函數(shù)f(x)遞增,故當(dāng)x=1時,f(x)min=3+a,

        當(dāng)且僅當(dāng)f(x)min=3+a>0時,函數(shù)f(x)>0恒成立,故a>-3.

        ●錦囊妙計(jì)

        本難點(diǎn)所涉及的問題及解決的方法主要有:

        (1)求函數(shù)的值域

        此類問題主要利用求函數(shù)值域的常用方法:配方法、分離變量法、單調(diào)性法、圖象法、換元法、不等式法等.無論用什么方法求函數(shù)的值域,都必須考慮函數(shù)的定義域.

        (2)函數(shù)的綜合性題目

        此類問題主要考查函數(shù)值域、單調(diào)性、奇偶性、反函數(shù)等一些基本知識相結(jié)合的題目.

        此類問題要求考生具備較高的數(shù)學(xué)思維能力和綜合分析能力以及較強(qiáng)的運(yùn)算能力.在今后的命題趨勢中綜合性題型仍會成為熱點(diǎn)和重點(diǎn),并可以逐漸加強(qiáng).

        (3)運(yùn)用函數(shù)的值域解決實(shí)際問題

        此類問題關(guān)鍵是把實(shí)際問題轉(zhuǎn)化為函數(shù)問題,從而利用所學(xué)知識去解決.此類題要求考生具有較強(qiáng)的分析能力和數(shù)學(xué)建模能力.

        相關(guān)閱讀:

        2021年成人高考高起點(diǎn)數(shù)學(xué)(文)真題及答案

        2021年成人高考高起點(diǎn)數(shù)學(xué)(理)真題及答案

        相關(guān)推薦

        2022成考備考試題、復(fù)習(xí)資料一覽hot-t.gif

        成人高考備考復(fù)習(xí)指南專題

        了解更多成人高考備考技巧請點(diǎn)擊>>

        鎖定考點(diǎn),突破難點(diǎn),2022年成人高考高效通過!點(diǎn)擊馬上聽課>>成考各科精講視頻教程

        溫馨提示:因考試政策、內(nèi)容不斷變化與調(diào)整,本網(wǎng)站提供的以上信息僅供參考,如有異議,請考生以權(quán)威部門公布的內(nèi)容為準(zhǔn)!
        專注在線職業(yè)教育24年

        項(xiàng)目管理

        信息系統(tǒng)項(xiàng)目管理師

        廠商認(rèn)證

        信息系統(tǒng)項(xiàng)目管理師

        信息系統(tǒng)項(xiàng)目管理師

        信息系統(tǒng)項(xiàng)目管理師

        學(xué)歷提升

        !
        咨詢在線老師!